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Abstract A mathematical model that calculates volume
expansion and contraction and concentration and stress
profiles during lithium insertion into and extraction from a
spherical particle of electrode material has been developed.
The maximum stress in the particle has been determined as
a function of dimensionless current, which includes the
charge rate, particle size, and diffusion coefficient. The ef-
fects of pressure-driven diffusion and nonideal interactions
between the lithium and host material have also been
described. The model predicts that carbonaceous particles
will fracture in high-power applications such as hybrid-
electric vehicle batteries.

Introduction

Particle fracture and electronic isolation of active electrode
material is a potential failure mechanism in lithium-ion
batteries. Volume changes in electrode particles during
lithium insertion and extraction create stresses which may
induce cracking. This is particularly evident in lithium
alloys, which undergo volume changes of up to 300% of the
nonlithiated electrode material [1]. Thomas [2] has sug-
gested that the cracking of alloys and subsequent growth of
a passivating film (the solid—electrolyte interphase) on the
newly formed surface leads to isolation of active material
from the conducting matrix.

Fracture has been observed in intercalation compounds
as well. Ohzuku et al. [3] and Sawai et al. [4] observed the
fracture of electrolytic manganese dioxide particles with
an acoustic emission measurement technique. Their results
indicate a higher rate of fracture at higher intercalation
rates, especially during the first discharge, and little or no
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cracking during deintercalation. The former observation
can be explained qualitatively by the high degree of lattice
strain experienced by an insertion material with a large
concentration gradient, which corresponds to high insertion
rates.

Kostecki and McLamon have observed that graphite
particles near the separator in composite negative electrodes
become more disordered with cycling [5]. A potential
mechanism that is currently under investigation is that
particles near the separator undergo higher rates of insertion
and extraction, and thus higher stresses, than do those near
the current collector. The high stresses in turn result in the
structural degradation of graphite near the separator.

Mathematical model

In the present work, we introduce a continuum model that
describes the volume expansion and contraction of a
spherical insertion material, as well as the stress distribu-
tions that arise from lithium intercalation. As illustrated in
Fig. 1a, the outer shell of the particle expands as lithium
is inserted, resulting in a strain differential between the
inner and outer regions of the sphere. This strain differen-
tial, which increases with the rate of intercalation, gives rise
to stress within the particle. If the stress surpasses the yield
stress of the material, the particle will fracture.

As a first approximation, we assume that the electrode
particle is disordered and that lithium diffusion and lattice
expansion/contraction are isotropic. Approximating the
particle as a sphere facilitates the use of a one-dimensional
model.

Transport

First, we must understand how the electrode particle grows
as it is charged with lithium. We treat the electrode material
as a binary system in which LiS represents host material
occupied with lithium and S represents unoccupied host
material (e.g., Cg for graphite).
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Fig. 1 Schematic of particle
expansion during lithium inser-
tion (e.g., during charge) and
contraction during lithium ex-
traction (e.g., during discharge).
Arrows pointing toward each
other indicate regions of com-
pression in the particle, while
arrows pointing away from each
other indicate regions of ten-
sion. Concentric circles mark
host-lattice tags, which are
initially evenly spaced.

a Expansion (charge)

The thermodynamic driving force for species LiS,
neglecting thermal diffusion, is [6, 7]
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where v; and c; are, respectively, the velocity and con-
centration of species i, ;s 18 the chemical potential of
species LiS, S s is the partial molar entropy of LiS, M, ;s is
the molar mass of LiS, p is the density of the solution,
Duiss 1s the binary diffusion coefficient due to a thermo-
dynamic driving force, R is the gas constant, and p and Tare
the pressure and temperature, respectively. Recognizing
that
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where x;;s is the mole fraction of LiS [or state of charge
(SOC)], and, using the definition of molar flux,
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we can rewrite Eq. (1) as
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where we have also used the fact that the mole fractions
sum to one:

Ny = xus (Mus + Ms) -
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b Contraction (discharge)

The chemical potential of LiS can be written as
Hys = M(L)is + RTIn ('YListiS)y (6)
where ugis is the chemical potential of LiS at a secondary

reference state and 7 ;s is the activity coefficient of LiS.
Thus,

("’ﬂ_) :E(l N
Oxpis Tpxs LS

Equation (4) becomes
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We assume that the electrode particle is spherically sym-
metric so that, in radial coordinates, the flux law becomes

Nis = xiis (Nus + Ns) - CDLis,s
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In terms of the open-circuit potential (OCP), the thermo-
dynamic factor is [see Eq. (133)]
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If U is a known function of xy s, then Eq. (10) is simply an
algebraic equation that is coupled with Eq. (9).



The density can be expressed in terms of molar masses
and mole fractions, such that Eq. (9) becomes
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We assume that D, ¢ is approximately independent of mole
fraction.
The continuity equations for species LiS and S are
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The total concentration ¢ should be, in general, a function
of composition, pressure (or stress), and temperature.
Because we assume the particle is isothermal, only varia-
tions in composition and stress must be considered. The
concentration is separated into two parts: one composition
dependent and one stress dependent. That is,
¢ = co(xus)g[tr(T)], (14)
where tr (T) is the trace of the total stress tensor and ¢y is a
function only of composition. The function g is defined in a
subsequent section.

We calculate ¢y from the composition at a particular
reference state (i.e., 7=25°C and p=1 atm). One can think
of ¢y as the reciprocal of the molar volume, which is
expressed in terms of partial molar volumes as

V= Cgl = xLiSVLiS + xsvs- (15)

Nis = X (Nus + Ns) - CDLiS,S
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The assumption inherent in Eq. (14) is that the compress-
ibility of the material is independent of composition. To our
knowledge, the partial molar volumes have not been
directly reported in the literature, but it may be possible to
estimate them from lattice-parameter data. Many intercala-
tion materials exhibit a linear relationship between lithium
content and molar volume, implying constant partial molar
volumes of both species. We shall therefore assume that
both molar volumes are constant over the range 0 < x
< Xmax, Where X, is the maximum SOC. The partial
molar volume of S is set equal to the molar volume of pure
host material at the reference state, which is determined
from measurable physical properties:

Ve=V"= Ms
Y

(16)

M and p? are the molar mass and density, respectively, of
vacant host material at the reference state. To estimate the
partial molar volume of LiS, we recognize that, at
Xris=Xmax, the volume of the particle has expanded by a
factor of 1+w, where w is the “fractional expansivity” of
the particle. Hence, from Eq. (15), we have

(1+ @)Vo = xmax Vs + (1 = Xmax) V5 s (17
where V; is the molar volume of the particle when it is
devoid of lithium [i.e., the molar volume of pure S, given in
Eq. (16)]. Rearranging, we have
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Equation (15) becomes
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We can likewise modify Eq. (11):
) Bp} (20)
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Coordinate transformation

Because the volume of the electrode particle changes during
charge and discharge, we must transform our equations from

the (r,¢) coordinate system to the (£,7) coordinate system,
where £ is the dimensionless radial position:

r
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Here, R(t) is the radius of the particle, which varies with
time.

Spatial derivatives are likewise transformed:
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where we have dropped the subscripts on all partial
derivatives, it being implied that £ and ¢ are now the
independent variables of interest.

Displacement and the lattice velocity

We define the displacement, u, to be the difference between
the radial position, (7, f), of a lattice element at time ¢, and
the initial radial position, 7, of that lattice element. That is,
u=r —r. (27)
We can think of 7, as a lattice tag for crystallographic unit
cells of host material, which consists of a mixture of S and
LiS. The tagged cells can always be referenced to their initial
position, 7y, despite the fact that their position at a later time
may change. The circles drawn in Fig. 1 denote the positions
of lattice tags after the particle has been deformed during
lithium insertion or extraction.

The correct definition of the lattice velocity is the rate of
change in displacement for a tagged cell with initial position
ro. In other words, it is the rate of change of displacement at
constant ry. Note that, according to Eq. (27), this is also
equal to the rate of change in the radial position of a lattice
element at constant initial position. Hence,

_(owy _ (o
T \ae), " \ot)
0 0

(28)

The lattice velocity can also be defined in terms of lithium-
occupied host sites (LiS), lithium-unoccupied host sites (S),
and host-lattice vacancies (Vs). A lithium-unoccupied host
site and a host-lattice vacancy are here defined to mean two
different types of sites. The former is a unit of host material
(e.g., C¢) that does not contain lithium, while the latter is a
void where the unit of host material should be. According to
Battaglia [8], the flux of host-lattice vacancies relative to
their convective flux is equal and opposite to the total flux
of filled lattice sites (both S and LiS) relative to their
convective flux:

NLiS + NS — CV, = _(NVS — C‘VSDL), (29)
where V5 is the Kroger—Vink notation [9, 10] for a host-
lattice vacancy (e.g., a void where a C¢ unit should be). We
assume that, for host-lattice sites, there are no such
vacancies, so that the flux and concentration of vacancies
are zero. Thus,

Nus +Ns
— =

. (30)

To evaluate the time derivative of u given in Eq. (28), we
make use of the definition of displacement [Eq. (27)] and
the partial-derivative identity:
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Combining Egs. (28), (30), and (32) yields
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NLiS + NS o 8[ »
c N ou\ -
o'/,
Because there is a one-to-one correspondence between the
radial position, 7, of an element and that element’s position

along the radial coordinate, », we can drop the primes in
Eq. (33), leaving

ou
NLiS + NS - 3t r
c | — u
o/,
We now have the lattice velocity in the r—¢ coordinate

system, which must be transformed to the £~ coordinate
system. For convenience, we use the definition

_fou\ 1 (Ou
v= (&), (),

In terms of the independent variables & and ¢, the lattice
velocity equation becomes

(33)

(34

(35)

((')u) dR
) et
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c 1—w
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Finally, we note that the total radius of the particle is
dependent only on time, and not on position within the
particle:

dR
a 0. (37)

At this point we have nine dependent variables: R, u, w,
Xus, Nus, Ns, ¢, p, and «5; and eight governing equa-
tions: Egs. (10), (19), (24), (25), (26), (35), (36), and (37).
To supplement these equations, we require some insight
into the internal forces on the host material due to lattice
expansion and contraction.

Solid mechanics

To describe fully the physical picture portrayed here, we
must relate the radial displacement of material to the stress
and pressure in the particle, as well as incorporate the stress
into our equation of state for the concentration. Thus, we
must formulate equations for strain and stress distributions
in the sphere.
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For finite displacement, the Eulerian strain is given by

[11]

E' :% {1 - (X%X)T -X%x], (38)

where I is the identity tensor. X is the initial position of a
volume element in its undeformed state and x is the current
position of the element in the deformed material. All
momentum and mass balances are written in an Eulerian
formulation, that is, in terms of the position x.

The relationship between the initial and current positions
of a volume element is
X=x—u, 39)
where u is the displacement vector. We can therefore write
Eq. (38) as

1/ -~ = - - I g
E'= (1—vxx-xvx VXUV 4 Vol - XV — Vol - qu) .

(40)
Note that, regardless of the coordinate system,
ox;
— =4y, 41
a0 (41)
where 0, is the Kronecker delta. Thus, we have
L 1 0 0
XVy=Vyx= [0 1 0| =1, (42)
0 0 1
and the Eulerian strain can be written
1/ - = - -
E'=> (qu 4+ V- Vyu- qu). (43)
In spherical coordinates, for an arbitrary vector a,
roa, 10a, ay 1 0da, ay 7
or rad r rsinf op  r
= dag 10ay a, 1 0ag ay
aV=|— —+— —— — —cotf
or r8€+r rsinf op r
da 1 da 1 0day, a a
—2 - — 0 D coth +—
L or rofd rsinfdp r r
(44)
and
N 2 \T
Va= (av ) . (45)

We can write out the required gradient tensors in Eq. (43) in
a simplified fashion by noting that our spherical particle is
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symmetric with respect to 6 and ¢, and that the only
nonzero component of displacement is u,. Hence, the
gradient of the displacement vector becomes

[ O,
o 0
or
wWi=Vau=|0 ¥ o (46)
r
0o o0 X
L r o4

Substituting these tensors into Eq. (43), we have

Cou, 1 [(0u,\* T
— = 0 0
a2 < 8r>
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r 2\r
u 1 /u,\2
o el
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The radial strain is thus
w1 [u\?
=E,=———(—], 48
or o 2 <8r> (48)
and the tangential strain is
u  1u?
StEE(Q@:E@@:;—ErT, (49)

where we have dropped the subscript from the radial
displacement. In spherical coordinates, the dilatational
strain is given by the trace of the strain tensor

The normal radial stress is given by Hooke’s law:

u 1 [ou\? u 12 (51)
— = + 20 -—=—=),
o 2 \or ro 22

where A and p are the Lamé constants [11]. The normal
tangential stresses are given by

oy = he + 2ue;

= (A +2p)

oy = he + 2ug;
|1y
or 2 \or

The stresses defined here are the elastic components of
stress, with the sign convention that compressive stresses

212

2 52
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are negative and tensile stresses are positive. This is the sign
convention commonly used in the field of solid mechanics,
but is the opposite of that encountered in much of the
chemical engineering literature [12]. The total stress is the
difference between the elastic stress and the thermodynam-
ic pressure:

Ty =0 —p. (33)
This total stress is what should be compared to the yield
stress of a material to determine whether fracture is likely to
occur.

Equations (51), (52), and (53) constitute a modified
version of Hooke’s law. The standard formulation relates
the strain directly to the total stress, which is taken to be
purely elastic. The modification is necessary due to the fact
that strain is created both by elastic stress and by variation
in composition. Some other authors [13, 14] divide the
strain in exactly this manner, with the strain given as the
sum of a stress component, given by Hooke’s law, and a
temperature- [13] or concentration-dependent [14] term,
which can be considered thermodynamic. Our approach is
equivalent, but instead divides the stress into two
components, one elastic (0;) and the other thermodynamic
(p). The equivalence is shown by Timoshenko, who
calculates thermal stress in a solid using both formulations
[13]. Our approach is somewhat more general, in that the
thermodynamic pressure, p, is not restricted to be equiv-
alent to the mean normal pressure, which is related to the
trace of the total stress tensor.

In terms of the elastic (Young’s) modulus (%), Poisson’s
ratio (v), the variable w [see Eq. (35)], and the dimension-
less radial coordinate (&), Egs. (51) and (52) become

E
T 01— 20)
| u 1w
X {(1—V)<w—§w>+2y<§—R—§€2?>]
(54)
and

E 1, n u 1P
= —“|v|w—= — ————.
T U0 -2 2" ) TR T 20R2
(55)
Because both of these equations contain singularities at
&=0, we must calculate their limits as & approaches zero.

This involves the use of I’Hopital’s rule along with Eq. (35).
We find that

()

at £=0. Equation (56) is used in the numerical solution, but
it is not strictly a boundary condition.

(56)

Oy = Ot



To complete our set of equations, we must define the
pressure within the particle. Neglecting gravitational and
other body forces, the momentum balance within the
particle is

(57

This second-order partial differential equation must be
transformed to the (£,7) coordinate system. It is convenient
to introduce the variable

_ (ou\  [Ou 7£d72
T \a), " o) S

In terms of this new variable and previously defined
dependent variables and parameters, Eq. (57) is trans-
formed to yield

d(or — p)
g

(5%)

+ (Ur - 0'1) = CR[xLiSMLiS + (1 - xLiS)MS]

L (E_EdR e
ot R dt o)

MmN

(39

The right side of the equation constitutes the inertial terms.
These are negligible in the present application, as discussed
later. Note that without the use of the variable z, the second
order time derivative would be written as

9 u 8*u dR ow d*R
D2 ) T aa TS T T We T
). ot dt o dt (60)
+ é d_R 2 + ga_w
A WS )
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Not only is this a more cumbersome substitution, but the
second order time derivatives would require a computation-
ally expensive central-difference time-stepping technique.

Finally, we must determine the dependence of concen-
tration upon stress. To derive the function g in Eq. (14), we
begin with the definition of the isothermal compressibility
of a fluid:

180V
H__WW’ (61)

where ¢V is the volume of an element of the fluid and p is
the pressure. For the solid material we consider here, we
replace the pressure with minus one-third the trace of the
total stress tensor:

tr(T)
3

p=- (62)

The pressure defined here is the mean normal pressure,
which is generally not identical to the thermodynamic
pressure, p, used in Eq. (61) [11]. However, using this
definition of the pressure allows us to define a compress-
ibility in terms of the elastic modulus and Poisson’s ratio
that is consistent with Hooke’s law. Equation (61) becomes

kK 1.9(6V)

3 6V otr(T)

: (63)

For a material with finite strain, the deformed volume is
related to the undeformed volume and the elements of strain
by [11, 15]

SV = 8V0\/1 + 2(81 + & + 83) +4(8182 +e163 + 8283) + 8e1&263.

(64)

In spherical coordinates, €) = &, and & = &3 = &.

For the dependence of concentration upon stress, we
neglect variations in composition, those being contained in
co. Hence, the components of strain can be related directly
to the components of total stress by Hooke’s law:

e = — (T, — 2uTY), (65)

| —

[(1—=v)Ty —vTy]. (66)

| —

&t =

We make use of the fact that the two components of stress
should be of the same order of magnitude as the trace of the
stress tensor. Hence, Eq. (64) becomes

5v = o1, |1 + L= 2D 22)tr(T)] +0 (—[“g)] ) N 1)

As long as the components of the total stress are much
smaller than the elastic modulus, we can neglect terms of
order tr(T)*/E* and higher. Equations (63) and (67) yield

K (1 -2v)
3 E+42(1—20)tr(T) (68)




300

We would like to use a best constant value for the
compressibility; therefore, we use

K :3(1;]32”), (69)

which should be valid for stresses much smaller than the
elastic modulus. Note that £ and v, and therefore &, are, in
general, dependent upon composition. However, in the
absence of specific measured data, we take them to be
constant. This allows us to partition the concentration
according to Eq. (14).

In terms of the total concentration of the element,
Eq. (63) becomes

K 1 dc
T . 70
3 c otr(T) (70)

Hence, for a constant value of &, the concentration is given

(71)

= coexp {— (- ZV)(JTE+ 200 — 319)] '

We can now combine the stress and composition depen-
dences of the concentration [Egs. (19) and (71)] into a
single equation of state:

M. 1-2 200 — 3
! :—OS <1 + @ xus) exp [( V(o + 201 p)] )
Py Xmax E

(72)

There are now 12 variables (R, u, w, z, x5, Ny, Ns, ¢,
o¢, 0, P, and o) governed by 12 highly coupled and
nonlinear equations [Egs. (10), (24), (25), (26), (35), (36),
(37), (54), (55), (58), (59), and (72)].

Boundary conditions

Equations (24), (25), (26), (35), (37), and (59) are first-
order differential equations in position, each of which
requires an appropriate boundary condition.

The gradient in lithium mole fraction is set by the current
density at the edge of the sphere. Because the area of the
particle changes, the current density for galvanostatic
charge or discharge must be related to the total current
delivered to the particle, I,, which is constant under
galvanostatic conditions. For our purposes, the electrode
consists of a single particle, but nonuniform current
distributions throughout the electrode, and hence, variation
in /, from one particle to the next, even under galvanostatic

conditions, must be taken into account in porous electrodes.
Furthermore, the current density is not, in general, uniform
over the surface of a single particle, and the local stress
should be higher where the current density is above the
average. We assume that the current is distributed evenly
over the surface of the particle, implying that our
simulations yield a best-case scenario for particle fracture.
For a real particle, particularly one that is not spherical,
fracture should occur at a lower charge rate than is predicted
here.
The current density at the particle surface is given by

_ b
4R

i

(73)

‘R is the radius of the particle at a particular time. Thus, the
boundary condition for Eq. (24) is

d I
r <Nus _CxLiSr> =P ate=1,

4nF (74

dt

where F'is Faraday’s constant. The left side of the equation
is obtained by subtracting the convective flux of LiS from
its total molar flux. We need not transform the time
derivative in Eq. (74), because it is here defined at a fixed
value of £ (i.e., that corresponding to the particle surface).
Note that » and R are identical at this point.

For Egs. (25) and (26), we set the flux of each component
to zero at the center of the sphere:

Nys = 0at{ =0, (75)

Ny =0at& =0. (76)
For Eq. (35), one might be tempted to use the condition
that the radial displacement at the center of the sphere is
Zero:
u=0atf=0. 77
However, this is not independent of Eq. (36) in the limit as £
goes to zero. Thus, we must use a suitable boundary

condition for w at the center. Differentiating Eq. (55) with
respect to £ and taking the limit as £ goes to zero, we find

0 E
L A

3 (1+v)(1-2v)

w

o€ até = 0.

(78)

Thus, if we assume that the derivatives of the stress
components are zero at the center (i.e., there is no
discontinuity in the slope of the stress as we pass through
the center), then we can use the boundary condition

9
M _ate=o.

o€ (79)



To determine the radius of the particle in Eq. (37), we
note that the rate of change in the total radius of the particle
is simply the rate of change in displacement at the surface of
the particle:

d 0
R——uatle.

dt ot (80)

Finally, for the momentum balance [Eq. (59)], we apply a
radial force balance at the particle surface:
or—p+po=0at{=1, 81
where py is the external hydrostatic pressure.

Equation (77) can be used in place of Eq. (36) at £=0,
although it is not considered a boundary condition.
Moreover, Eq. (36) takes the form

Nis + Ns _ % (82)

c ot
in the limit, as £ approaches one. This equation is obtained
by substituting Eq. (80) into Eq. (36). We refer to Egs. (56),
(77), and (82) as alternate boundary equations. They do not
meet the strict definition of a boundary condition, but are
special limits of the associated governing equations. Like
boundary conditions, they are implemented at boundary
mesh points.

Nondimensionalization

It is quite illuminating and convenient to nondimensionalize
the equations that govern particle expansion and contrac-
tion. Equation (21) defines the dimensionless spatial
coordinate, while

tDLiS,S
T = 5
RO

(83)

is the appropriate dimensionless temporal coordinate,
where Ry is the initial radius of the particle. The dimen-
sionless dependent variables are

NiROMs

N =
l Dus,spga

(84)

Nus = xLiS(NLiS + Ns)
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o=, (85)
R

= (86)

a=t

0= 87

Eizol(l—ﬁ—yé(l—b/), (88)

SEYSIETIE-7) )

and

o ZRO
C B DLiS,S ' (90)

Although it is not considered one of our dependent
variables, we nondimensionalize the OCP as well:

— FU
U=—

e 1)

The variables xi ;5, w, and oy ;5 are already dimensionless.

Equations (10), (24), (25), (26), (35), (36), (37), (54),
(55), (56), (58), (59), (72), (74), (75), (76), (80), (81) and
(82) become
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Six principal dimensionless parameters fall out of the
analysis, including Poisson’s ratio (v), the dimensionless
current,

1, M.
[=—P= (111)
47TROFDLiS,Sp27
the partial molar volume ratio,
A 7Lis ngus @
=== =14+ , 112
S Vs M Xmax ( )
the ratio,
D2 (1 +v)(1 =20
p=PlaspU 11 = 20) (113)
RoE
the dimensionless Young’s modulus,
EM.
e=— > , (114)
PORT(1 4+ v)(1 —2v)
and the molar-mass ratio,
— M.
7 — Mus (115)

Ms '

Note that these last two parameters vanish when we neglect
pressure-driven diffusion. There is also an as yet unspeci-
fied number of dimensionless parameters contained in the
OCP-SOC relationship that determines the value of the
activity coefficient. D can be thought of as the ratio of
diffusive to elastic energy, and e as the ratio of elastic to
thermal energy. For a typical carbonaceous particle, D is on
the order of 10?2, and the inertial term in Eq. (103) can be
neglected.



Equations (77), (79), (92), (93), (94), (95), (96),
(97), (98), (99), (100), (101), (103), (104), (105), (106),
(107), (108), (109), and (110) were posed in finite-
difference form and solved with the BAND(j) sub-
routine. Equation (102) was excluded because D is neg-
ligible, and therefore the equations for { become uncoupled
from the remaining 11 equations. A BAND map of the
equations is given in Fig. 2. Altogether, there are 11
variables and 11 governing equations, including 6 that are
first order in £ (or y), for which six boundary conditions are
employed: 3 at the center of the sphere, and 3 at the surface.
A Crank—Nicolson timestepping approach was employed,
giving an error that is of order (A&)? in the spatial direction
and (Ar)2 in the temporal direction. Forty-one spatial mesh
points were used and were shown to give sufficient
accuracy. Increasing the number of mesh points lengthened
the computation time and generated significant round-off
errors. At higher dimensionless currents, simulations with a
large number of mesh points (=100) exhibited instability.

The simulation interval up to the end of lithium insertion/
extraction was divided into roughly 1,100 timesteps (for the
galvanostatic mode). The first 250 timesteps were limited
to approximately 5x10°°, depending upon the dimension-
less current, so that peaks in the maximum stress (see
Fig. 6) could be resolved. Subsequently, the time increment
was doubled after every 20 timesteps until a maximum

Equation 92
Equation 93
105
Equation 94
106
Equation 95
107
Equation 96
77
--------- Equation 97
79 {110
--------- Equation 98
108
--------- Equation 99
1101
— Equation 100
1101
""""" Equation 102
Equation 103
109

Equation 104

Fig. 2 Map of equations that are solved numerically. Solid-boxed
equations are boundary conditions and dash-boxed equations are
limiting forms of governing equations.
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increment of 0.15 was reached. Under some conditions,
particularly those in which the assumption of ideality is
relaxed, the number of timesteps was increased to improve
the resolution of certain regions of interest. For simulations
of long dimensionless duration, corresponding to small
dimensionless current, the maximum increment was in-
creased to 0.5. Note that timesteps are dimensionless.

Results and discussion
Ideal solutions

Now that we have a general framework for volume change
and stress evolution in isotropic spherical particles due to
lithium insertion and extraction, we make two more
simplifying approximations. We assume that the thermo-
dynamic factor is equal to 1 (i.e., the OCP is purely
Nernstian), and we neglect the inertial term in the
momentum balance because the dimensionless parameter,
D, is small. The former simplification, which is relaxed in
later sections, eliminates the need for Eq. (92), while the
latter eliminates the need for Eq. (102). This reduces our set
of equations and variables to 10 each; thus, speeding the
simulations. Unless otherwise noted, the results that follow
reflect these approximations.

Figures 3, 4, 5, 6, and 7 apply to simulations of a
carbonaceous particle that expands during lithium inser-
tion. The properties and other parameters used for the
simulations are given in Table 1. The particle size,
diffusivity, and density are representative of a wide class
of carbonaceous materials, including mesophase carbon
microbeads (MCMB), which are frequently used in lithi-
um-ion batteries. These materials are generally more
disordered and, therefore, more isotropic than natural
graphite, and their capacity is generally lower than that of
natural graphite, although this depends upon the heat-

treatment temperature [16]. The elastic modulus is
2.5x107 , , . 2.5x107
=
a
v 20F 20 2
) 2
o 15k 15 2
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< 2
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:
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Dimensionless radial position, & = r/®

Fig. 3 Radial profiles of a the dimensionless current and b the SOC
after 0.9 s of lithium insertion at a C/3 charge rate. The vertical
dotted line divides regions of pure elastic deformation and concen-
tration deformation. The parameters used in the simulation are listed
in Table 1.
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Fig. 4 Simulated concentration profiles for lithium in the particle,
as a function of the dimensionless radial position, at the end of
lithium insertion. The solid curve includes the influence of pressure-
driven diffusion, while the dotfed curve neglects this driving force.
The dashed line indicates the average mole fraction of lithium-
occupied sites in the particle, corresponding to a SOC of 0.6. The
parameters used in the simulation are listed in Table 1.

representative of isotropic graphites, [17] while the
Poisson ratio is typical of most solid materials. The sim-
lations were terminated once the average SOC in the
particle reached 0.6 (i.e., LiyCs). Measured and cal-
culated lattice parameters for graphite indicate that the
lattice volume increases by 13 to 14% (10 to 11% for the
inner-layer spacing and 1 to 2% in the transverse
directions) during full lithium insertion (C¢—LiCg), and
that the variation is approximately linear with respect to
lithium composition [18-20]. Hence, it was assumed that
the particle volume increased by 8% over the course of the
simulation (w =0.08).

Despite the anisotropy of expansion for a single
graphitic grain, it is assumed that particles are disordered
and consist of enough grains that the overall volume

0.3
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Fig. 5 Simulated normal stress profiles in the particle, as a function
of dimensionless radial position, at the end of lithium insertion.
Positive values indicate tensile stresses, while negative values
correspond to compression. The solid curves include the effect of
pressure-driven diffusion, while the dashed curves neglect it. The
parameters used in the simulation are listed in Table 1.
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Fig. 6 Maximum normal radial stresses (at £&=0) and minimum
normal tangential stresses (at £&=1) during lithium insertion. The
dotted curves correspond to a simulation with 2=0.3, in which
pressure diffusion is neglected, while the dashed and solid curves
correspond to simulations that include pressure diffusion, with 1=0.2,
0.3, and 0.4, as indicated. All other parameters are given in Table 1.
Plots b and ¢ show the stresses at short times, and the open squares in
plot ¢ mark the maximum tensile stress obtained for each simulation.

expansion is isotropic. Anisotropic carbons, such as natural
graphite, may be more suited to a prismatic (rather than
spherical) model, in which the material primarily expands
in the direction perpendicular to lithium diffusion. In this
case, the stress in the particle should be somewhat less,
because the material is not constrained by a spherical
geometry. The stress generated in an actual particle should
fall somewhere between the spherical and prismatic
extremes.
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Fig. 7 Magnitude of the maximum tensile and compressive stresses
encountered during lithium insertion, both as a percentage of £ (left
axis) and in absolute terms (right axis), as a function of
dimensionless current. The upper axes give the corresponding C
rate for a 5-pum particle radius and the square of the radius for a 15C
rate. For Ro=5 um, arrows a and b correspond to C/3 and 5C rates,
respectively. For a 15C rate, arrows c¢ through f correspond to
particle radii of 2, 3, 4, and 5 um. The dotted line marks the
approximate yield strength of the material.

Rather than list the current that is delivered to the particle
in Table 1, we record the C rate, or inverse of the time
required for full insertion. This is a better standard for
comparison of particles with different radii than the current
per particle. In terms of previously defined quantities, the C
rate is

LM,
C= ps (116)

4 b
3 TRAF pdAx

where Ax is the change in SOC for complete charge or
discharge of the particle. For the carbonaceous material
considered here, the minimum SOC is zero, and Ax=+
Xmax- Hence, the dimensionless current defined in Eq. (111)
becomes

=+ CRéxmax

117
3Duisss ()

In terms of the dimensionless time required for full
insertion, the dimensionless current is

~ Xmax

(118)

3Tmax

From Eq. (111), one might erroneously draw the
conclusion that decreasing the particle size will result in
an increase in the dimensionless current, when in fact, the
opposite is true because 7, depends upon particle size.
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Table 1 Parameters and corresponding dimensionless groups used
in the simulations

Parameter Value Dimensionless  Value
parameter

Xiso 0 I 1.667x1073

Ro (um) 3 Vi 1.1333

Duss (ms) 1077 e 399.5

Otuiss ! M 1.09632

® 0.08 D 8.09x107

chh 0.333 (or C/3)

E (GPa) 15

v 0.3

M, s (g/mol) 79.001

Ms (g/mol) 72.06

o (glem®) 2.1

Xmax 0.6

Figure 3 shows the concentration profile and dimension-
less displacement profile after 0.9 s of lithium insertion at
the C/3 rate. At this time, the concentration profile has not
yet been fully established, and there is essentially no lithium
in the core of the particle (£<0.6). However, there is a
positive displacement in this region due to the tension
created by the expanded shell. The vertical dotted line in the
figure divides the particle into two regions; to the left of the
line, the strain is almost entirely elastic, while to the right,
the strain is a combination of elastic strain and strain due to
a compositional expansion of the lattice. The displacement
is a linear function of radial position in the purely elastic
region, satisfying the standard Hooke’s law and momentum
balance equations for spheres with uniform radial surface
tension.

Figure 4 shows the lithium mole fraction profile in the
particle at the end of lithium insertion. For comparison, the
profile that is obtained when pressure diffusion is neglected
is also shown. The dashed line marks the average mole
fraction in the particle. As might be expected, the variation
in composition is significantly smaller when pressure dif-
fusion is included because there is a substantial variation of
the pressure in the particle. The pressure gradient acts to
reduce the lithium concentration gradient, thereby lowering
the mechanical stress and, in turn, minimizing the pressure
gradient until a balance is obtained. Even when pressure
diffusion is neglected, the mole fraction varies by less than
a 10th of a percent throughout the particle. This is because
the insertion rate used for this simulation is relatively low,
corresponding to a charge rate of C/3 (3-h charge) for a
3-um particle.

Figure 5 shows tangential and radial stress profiles for
the same pair of simulations. The stress variation is almost
20% greater when pressure diffusion is neglected. This
underscores the importance of including the pressure-
diffusion term in our analysis.

The stresses plotted in Fig. 5 are total stresses, as given in
Eq. (53). The radial stress is tensile in the center of the
particle and goes to zero at the surface because it is defined
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relative to the external pressure on the particle. The
tangential stress is tensile and equal to the radial stress at
the center of the sphere, but is compressive at the particle’s
surface. The equality of the two stress components at the
center is the consequence of their coincident directionality
at r=0.

The tensile vs compressive nature of the stress compo-
nents can be explained as follows: the outer part of the
spherical particle is swollen with lithium relative to the inner
part of the sphere. Thus, the lattice constant for the host
material is greater near the surface than it is near the center.
This lattice mismatch has the effect of pulling at the
(relatively) lithium-poor inner part, both radially and tan-
gentially, and tangentially pushing together the lithium-rich
outer part, as illustrated in Fig. 1a.

Figure 6a shows how the maximum (tensile) radial and
minimum (compressive) tangential stresses in the particle
vary as lithium is intercalated for a few different cases. The
dotted curves correspond to the simulation in which pres-
sure diffusion is neglected, and the solid and dashed curves
correspond to simulations that include pressure diffusion
with three different values of v, 0.2, 0.3, and 0.4, as
indicated in the figure.

Although the stresses at the end of lithium insertion are
much greater when pressure diffusion is neglected, the
maximum stress that is obtained near the beginning of
lithium insertion is comparable in both cases, as is apparent
in Fig. 6¢. A clue to the more rapid decline in stress for the
pressure-diffusion case can be found in the binary diffusion
equation [Eq. (93)], in which the pressure gradient is mul-
tiplied by the mole fractions of lithium and host material. As
the mole fraction of lithium increases during insertion, the
pressure-diffusion term becomes more dominant, resulting
in a more uniform lithium concentration and, therefore,
smaller stress. The pressure-diffusion effect is diminished
near the end of insertion due to the monotonic decrease in
particle density [see Eq. (9)]. This is exhibited by a leveling
off of the stress extrema and a slight increase in their
magnitude after 2.5 h.

The pressure-diffusion effect should disappear entirely at
SOCs near one. This can be verified easily by substituting
Eq. (104) into Eq. (93) to show that the factor in front of the
pressure gradient vanishes for x;;5=0 and

MCX Er+26[—37f 1 (6)]
P 1+v Xmax

XLis =

(119)

The exact value of the above root depends upon the
dimensionless current, but in any case, the exponential is
near unity, and therefore, so is the corresponding root. This
relationship would be different if variable partial molar
volumes were used. It can be shown that the pressure-
diffusion term also vanishes in the limit x; ;s—o0. The fact
that there are three roots means that the pressure driving

— — o 20 — 3 ’
M—1) (142 ) T2 exp (20T
Xmax Xmax I+v

force can contribute to diffusion both positively and neg-
atively. In this particular case, @ /xmaX > M, but if the
opposite were true, the pressure-diffusion contribution
would be reversed.

The figure shows that the maximum stress increases with
v. As vincreases, a material resists changes in volume more
than it resists changes in shape. A value of v=0.5 cor-
responds to an incompressible solid. The spherical geometry
of the particle considered here constrains the material such
that the overall shape does not change, but the size varies
according to the concentration of lithium. Hence, a material
with a higher Poisson ratio should undergo greater stress.
Using a mathematical lens, it is clear from Eqs. (54) and (55)
that the factor £/(1 + /) /(1 — 2v) blows up as vapproach-
es 0.5, resulting in higher stresses for a given displacement.
The higher stress results in a higher hydrostatic pressure,
which is why the effect of pressure diffusion is more
pronounced for simulations with higher values of v. The
magnitudes of the stress components for v=0.4 even dip
below those obtained for v=0.3.

Figure 6b and ¢ are expanded plots of the first minute of
lithium insertion. It is apparent that the maximum (or
minimum) in stress is not highly dependent upon whether
pressure diffusion is included. It is interesting to note that
the radial stress maxima, marked as boxes in Fig. 6c¢, are
obtained between 35 and 50 s, corresponding roughly to
the time at which the lithium concentration profile becomes
fully developed. This makes intuitive sense; as the overall
concentration difference through the particle increases, the
stress also increases. After the initial increase, the stress
curves level off on this time scale, indicative of the es-
tablishment of a pseudo-steady-state concentration profile.
There are two relevant timescales at play. The timescale for
diffusion, given by R% / D s s, governs the establishment of
the concentration profile, while the timescale for full
lithium insertion is 1/C. Note that the ratio of these two
timescales is contained in the dimensionless current. For
the present simulations, Ré / Diss =90s and 1/C=3 h. A
consequence of these disparate timescales is that, after a
few minutes, the stress evolution does not depend upon the
precise initial conditions (e.g., whether the concentration
profile is initially uniform). At higher dimensionless cur-
rents, these two timescales become more equivalent, and
the initial conditions play a larger role.

Furthermore, pseudo-steady-state stresses can be ob-
tained, or nearly obtained, during charges or discharges on
the order of 10 s in duration which are typical in the driving
profile of an electric vehicle or hybrid-electric vehicle
(HEV). The peak stress that is obtained depends more on the
SOC and the C rate than on the duration of charge/discharge.

Figure 6b also shows that the peak in tensile radial stress
(at the center of the sphere) somewhat lags the peak in
compressive tangential stress. The maximum value of x;
(€=1) —x.5(£ =0) occurs somewhere between the two
peaks. This delay is illustrated further by the lower initial
slope of the tensile stress compared to that of the com-
pressive stress. It arises because changes in the flux of



lithium into or out of the particle propagate from the surface
of the sphere to the center.

It is clear why the stress decreases in magnitude after full
development of the concentration profile when pressure
diffusion is included in the analysis. However, as is evident
in Fig. 6a, there is also a slight drop in the magnitude of the
stress components even when pressure diffusion is ne-
glected. This drop is due to the fact that as the radius of the
particle increases, the current density at the surface must fall
off as 1/R* to maintain the same overall rate of lithium
insertion (i.e., the same superficial current density). Thus,
neglecting the convective flux, the flux of lithium in the
particle at the surface of the particle is proportional to 1/R?
[see Eq. (74)]. As the flux decreases, the concentration
gradient through the particle likewise decreases, and thus,
the stress in the particle drops.

Whether the solid particle will fracture during lithium
insertion depends upon the maximum stress that is en-
countered in the material. It is clear that this maximum is
reached shortly after insertion begins. Although their
moduli vary widely, yield strengths of carbonaceous
materials are typically 0.2 to 1% of the Young’s modulus
[17]. Thus, the 0.25 to 0.4 MPa peak stresses represented in
Fig. 6 are well below the yield stress for a material with
Young’s modulus of 15 GPa, and we should not expect the
particle to fracture under the simulated conditions.

It is insightful to track the maximum stress as a function
of the lithium insertion rate. Figure 7 shows the maximum
tensile stress (at the center of the sphere) and the maximum
compressive tangential stress (at the surface of the sphere)
encountered during insertion as a function of the dimen-
sionless current given in Eq. (117). The right axis gives the
absolute stress in MPa, for a 15 GPa modulus material, and
the left axis gives the stress as a fraction of the modulus.
The dimensionless current is given on the lower axis, while
the two upper axes give the corresponding charge rate (for a
5-um particle) and particle size (for a 15C insertion rate). It
is clear from the figure that the maximum stress increases
with dimensionless current, as expected. According to
Eq. (117), this means that the stress increases with both the
rate of insertion and the particle size, but decreases when
the diffusivity of lithium increases. Of the dimensionless
parameters, the C rate, particle size, and diffusivity appear
only in / and k, the latter of which is negligible, so their
influence is captured in its entirety by Fig. 7.

It is worth noting that the tensile stress is greater than the
compressive stress for all values of /. Most materials have a
much higher compressive yield stress than tensile yield
stress; therefore, our results indicate that, during lithium
insertion, the particle is much more likely to fracture under
tension (starting near the center) than under compression
(starting at the surface).

Turning our focus to the C rates shown in Fig. 7, we see
that a 5C rate (arrow b) results in a stress that is an order of
magnitude greater than that which is produced at a C/3 rate
(arrow a). The former corresponds to a charge rate of

307

12 min, which is typical of the rate requirements for an
HEYV, while the latter, a 3-h charge, is more typical of an
electric vehicle application. Although the stress is much
higher for the 5C rate, it is still below the yield stress of the
material (indicated, approximately, by the dotted line in
Fig. 7). However, the yield stresses of materials are gen-
erally lowered by repeated strain cycling [21], and it is
possible that the yield stress of carbonaceous materials will
fall below 30 MPa when the lithium-ion cell is cycled.
Moreover, nonuniform current densities in a porous elec-
trode imply that some particles will be charged at rates
higher than the average. Increasing the charge rate further to
15C (arrow f) brings the maximum stress into the region in
which fracture is likely, even in the absence of cycling.

Winter et al. [22] suggest that cracking in alloy particles
can be avoided by selecting a small enough particle size.
We postulate that this critical size decreases as the charge/
discharge rate requirements for a given application are in-
creased. One could conceive of a porous electrode reaching
this state naturally as it is cycled, with the particles cracking
until they are below the critical size.

Arrows ¢, d, e, and f correspond to particle radii of 2, 3, 4,
and 5 pum, respectively, for a 15C rate of lithium insertion.
We see that a moderate reduction in the particle size has a
dramatic effect on the mechanical stress, lowering it well
below the yield stress of the material. Smaller particles
would therefore appear to be more suitable for high-power
applications, although a tradeoff must be considered. When
smaller particles are used, the electrochemical surface area
is greater, and so is the amount of lithium that is consumed
during formation of the solid electrolyte interphase [23, 24].
The degree of solvent cointercalation may also be greater
for smaller particles, particularly if the proportion of edge
sites close to basal planes is high [24].

To avoid belaboring the obvious, we have not shown
explicitly the dependence of the maximum tensile and
compressive stresses upon the diffusion coefficient, which
is contained in the dimensionless current. However, it is
worth remarking on the fact that the stress decreases as the
diffusion coefficient is raised, because a fairly prevalent
method for accelerated life studies of lithium-ion cells is to
raise the temperature. The argument for doing so is that the
higher temperature will hasten the degradation mechanisms
responsible for cell failure (e.g., capacity loss due to side
reactions), and predictions can be made about the life of the
cells at the normal operating temperature without waiting
many years for them to fail. However, if particle fracture
caused by volume expansion and contraction is a major
contributor to cell failure, raising the temperature, and
thereby the diffusion coefficient of lithium, should actually
prolong the life of the cell by lowering the stresses gen-
erated in the particles. A more general statement is that, by
raising the temperature, one runs the risk of under-
emphasizing failure modes that are dominant at the desired
operating temperature.
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Lithium extraction

To make a comparison between the lithium insertion and
extraction results, we use the same nominal radius and
nominal current densities in both cases. The nominal radius
is the radius of the particle in the lithium-depleted state, and
the nominal current density is the current density at the
beginning of insertion or the end of extraction.

Figure 8 shows the components of stress in the particle at
the end of lithium extraction, defined as the point at which
the lithium concentration falls to zero at the surface of the
particle, with the same nominal current density and particle
size used to generate Figs. 3 and 4. The components of
stress at the end of lithium insertion are shown for com-
parison. Both simulations include the effect of pressure
diffusion. The two sets of stresses contain similar features,
but compression occurs toward the center of the sphere and
tangential tension occurs near the surface during extraction,
as illustrated in Fig. 1b. Because crack formation is more
likely due to tension than compression, the most likely
point of fracture during extraction is at the surface.

Figure 9 shows the change in maximum (tensile) tan-
gential and minimum (compressive) radial stresses during
lithium extraction, both with and without pressure diffu-
sion. For comparison, the stresses that arise during lithium
insertion for the same set of parameters are reproduced from
Fig. 6. The dimensionless times required for full insertion vs
extraction are approximately related by the two-thirds power
of the degree of expansion, (1+w)*>. The dimensionless
time required for extraction is slightly less than (1+w) *>
times that required for insertion because extraction is
stopped once the concentration of lithium at the surface falls
to zero. The average concentration in the particle is always
greater than zero.

It is clear from Fig. 9a that the maximum stress is reached
at the very end of lithium extraction. The reason for a
continuous increase in the stress during extraction is tan-
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Fig. 8 Simulated stress profiles in the particle at the end of lithium
insertion (dashed curves) and at the end of lithium extraction (solid
curves). Both sets of curves include the effect of pressure-driven
diffusion. The parameters used are given in Table 1, except that the
initial SOC is 0.6 and the sign of the dimensionless current is
reversed for the extraction simulation. In each case, the composition
is initially uniform.
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Fig. 9 Maximum normal tangential stresses (at &=1) and minimum
normal radial stresses (at £&=0) during lithium extraction (solid
curves), with the corresponding curves for lithium insertion (dashed
curves) reproduced from Fig. 5 for comparison. Plot b shows the
same results on an expanded time scale. The curves are labeled as
follows: i tangential stress at £&=1, no pressure term; ii tangential
stress at &=1, with pressure term; iii radial stress at £=0, with
pressure term; iv radial stress at &0, no pressure term. For clarity,
the curves for lithium insertion with no pressure diffusion are
omitted from plot b. The simulation parameters are given in Table 1.

tamount to the reason for a continuous decrease (after full
concentration development) during insertion. As the particle
shrinks, the current density (and, therefore, flux of lithium)
increases, and the greater concentration gradient leads to a
higher stress. These trends are related to the manner in
which lithium is inserted/extracted (i.e., galvanostatically),
and do not necessarily hold for other charge/discharge
modes.

The magnitudes of the stress components with pressure
diffusion included (curves ii and iii) start out lower than the
corresponding stress magnitudes when pressure diffusion is
neglected (curves i and iv), but the extrema at the end of
lithium extraction are almost identical because the pressure
term vanishes as xy ;5 approaches zero.

Figure 9b compares the stresses during the first minute of
extraction (solid curves) to those during the first minute of
insertion (dashed curves), with the insertion curves without
pressure diffusion omitted for clarity. The symmetry is
striking; as with the insertion stresses, the increase in
magnitude of the radial stress at the center of the sphere
(curves iii and iv) lags the increase in magnitude of the
tangential stress at the surface of the sphere.



External pressure

In the results presented so far, it has been assumed
implicitly that the pressure external to the particle is zero,
indicated by the fact that the total radial stress goes to zero
at the particle surface. However, if we applied an external
pressure, the stress curves would be shifted in the negative
(compressive) direction, as shown in Fig. 10. Additional
external pressure would reduce the maximum tensile stress
that is obtained at a given dimensionless current while
increasing the maximum compressive stress, as shown in
Fig. 11. Because tensile strengths are generally lower than
compressive strengths, such a strategy could delay or
prevent the onset of particle fracture. A marginal increase in
the allowable dimensionless current due to an incremental
increase in external pressure can be calculated from the
slope of the curve, do;/dl, at any given stress level. In
particular, at the 30 MPa level, marked by the dotted line,
5 MPa of external pressure increases the allowable
dimensionless current by 0.030 (18%). We point out that
5 MPa is roughly 50 atm and, likely, is much greater than
the pressures that are typically applied to cells; therefore,
increasing the pressure so dramatically is not a practically
viable strategy.
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Fig. 11 Maximum tensile and compressive stresses encountered
during lithium insertion, with no external pressure (dashed curves)
and with an applied pressure of 5 MPa (solid curves). The horizontal
arrow along the dotted line indicates that, upon application of 5 MPa
of pressure, the dimensionless current can be increased by 18%
while maintaining a maximum tensile stress that is 0.2% of the
elastic modulus.

Nonideal solutions

We now turn our attention to nonidealities in the solid
solution that manifest themselves in both the thermody-
namic factor and the exchange current density, the latter of
which is relevant under potentiostatic conditions. Both of
these quantities are derived in the Appendix.

To model these nonidealities, we start with an empirical
fit for the OCP of MCMB graphite,' given by

<—0.105 < —0.124
Ul(xis) = 0.124 + 1.5 exp (—150x,;5) + 0.0155 tanh <X”—) —0.011 tanh (L>
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Fig. 10 Simulated stress profiles in the particle at the end of lithium
insertion, with no external pressure (dashed curves) and with an
applied external pressure of 5 MPa. The simulation parameters are
the same as those given in Table 1, except that C=10C (/=0.05).

This fit is valid over the experimentally measured
domain 0.01 < x5 < 0.99 . The OCP is plotted as a
function of xp;s in Fig. 12, along with the corresponding
thermodynamic factor, which is calculated from the OCP
by Eq. (133). Itis evident from the figure that plateaus in the
OCP, associated with staging in graphite, correspond to
thermodynamic factors, and, hence, effective diffusion
coefficients, near zero. Peaks in the thermodynamic factor
are related to high slopes in the OCP. Although it is difficult
to see on the scale shown in the figure, the thermodynamic
factor rises dramatically at low values of xy ;5 to a maximum

"'The fit is contained in the Fortran program Dualfoil.f, which is
available on our website at http://www.cchem.berkeley.edu/~jsngrp.
The fit has been modified slightly so as to avoid any regions in
which dU /dx > 0, which corresponds to a negative thermodynamic
factor. Specifically, the coefficient of the fourth hyperbolic tangent
has been changed from 0.0351 to 0.0347.


http://www.cchem.berkeley.edu/~jsngrp
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of 22 at x;;5=0.01. For the simulations described here,
the thermodynamic factor was set equal to 1 for
xus < 1.16 x 107*, as shown in the inset, to capture the
ideal nature of the dilute limit. This was necessary to ensure
convergence at low SOCs, at which the pressure diffusion
term and the empirically derived thermodynamic factor
would otherwise be too small for there to be a significant
driving force for diffusion. This underscores a limitation of
the empirical fit for the OCP, which cannot be measured
accurately in the dilute limit.

While it is possible to calculate the dilute limit of the
OCP from Eq. (133), assuming a thermodynamic factor of

N
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Fig. 13 The dimensionless exchange current density as a function
of SOC, according to Egs. a (121), b (122), and ¢ (123).

unity for x;;s < 1.16 x 107*, this correction should have
no impact on the galvanostatic simulations, which are
independent of the OCP, and has little impact even on
potentiostatic simulations, for which the dilute limit con-
stitutes only a small fraction of the simulated SOC interval.
A dilute-limit correction could also be made for high SOCs
(i.e., x1s>0.98), but all of the simulations for Li,Cq are
limited to x5 <0.6.

The exchange current density is also dependent upon the
OCP, and is therefore a function of the SOC. This potential
dependence is typically not included in electrochemical
kinetics, but a thermodynamically rigorous derivation of the
Butler—Volmer expression shows that for a nonideal solid
solution (i.e., one that does not have a Nernstian OCP), the
exchange current density does not vary smoothly with
lithium concentration in the solid.

Figure 13 shows the dimensionless exchange current
density as a function of SOC in three cases: curve a is the
exchange current density for an ideal solid solution, curve b
is that for a nonideal solution in which the OCP is used but
the activity coefficient of vacant host material is assumed to
be constant, and curve c is that for a nonideal solution in
which activity coefficients are derived from the thermody-
namic OCP. For curve a,

Iy 1-8_(
Iy = AR = (1 —xs) 0 (121)
Lit 0 CrLit
For curve b [see Eq. (144)],
BB B —pFU’
Iy = kyk fLi*,ncLﬁ(l — Xpis) €Xp < RT : (122)
For curve ¢ [see Egs. (157), (158), and (159)],
10 - (1 _.xl_is)l dxﬁs
(123)

X exp [—/Oxm g(x)dx — (B — xus)g(xus)] .
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Fig. 14 The dimensionless exchange current density as a function
of OCP, according to Egs. a (121), b (122), and ¢ (123).



Equation (122) is taken from Eq. (144), with 5 absorbed
into k,. To make a reasonable comparison between the

shapes of the three curves, we set the factor k‘gk{ A ffﬁ ncfl-

in Eq. (122) equal to 9. We further assume that the
concentration of lithium cations is equal to the reference
concentration, so that the thermodynamic OCP is identical
to the measured OCP.

Figure 14 shows the three exchange current densities as a
function of OCP. Here, the deviation of the ideal case (curve
a) from the nonideal case (curve c) is more apparent,
especially at high potential.

The boundary condition [Eq. (105)], which relates the
current density to the flux of lithium, has been altered for
the potentiostatic charge and discharge simulations repre-
sented in Figs. 15, 16, 17, and 18. The dimensionless
potentiostatic boundary condition is derived in the Appendix
and is repeated here:

d 5
Nus qus d‘i‘c = 5(1 - xLiS>1 ﬂx‘gsF@Lis)
x {exp[(1 — B)H] — exp (—BH)}até = 1,
(124)
2.5x107
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Fig. 15 a The maximum radial stress (at £&=0), b minimum
tangential stress (at £&=1), ¢ dimensionless current density, d surface
overpotential, and e dimensionless exchange current density during
potentlostatlc hthlum insertion. The potential is set to 0.1 V vs
lithium, Sk k7 172 L/ L/f =0.01, and Eq. (120) is used for the
OCP. All other paraméters are given in Table 1. Nonidealities are
included in the exchange current density and the thermodynamic
factor.
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Fig. 16 a The maximum tangential stress (at £&=1), b minimum
radial stress (at £&=0), ¢ dimensionless current density, d surface
overpotential, and e dimensionless exchange current density during
potentiostatic lithium extraction. The potential is set to 0.25 V vs
lithium, 8k’ k%A% /7 = 0.01, the initial SOC is 0.6, and
Eq. (120) is used for the OCP. All other parameters are given in
Table 1. Nonidealities are included in the exchange current density
and the thermodynamic factor.

I'(xr;s), H, and ¢ are given by Egs. (159), (162), and (163),
respectively, and (3 is a symmetry factor, assumed to be equal
to1/2. I'(xy js) 1s a function of SOC that contains the influence
of any solid—solid interactions, which are absent from an
ideal solid solution. For a Nernstian OCP, I'=1. § can be
thought of as the dimensionless ratio of mass-transport
resistance to kinetic resistance. It replaces / in the dimen-
sionless parameter count. The inclusion of 3 adds one to the
number of parameters.

Figures 15 and 16 show the maximum stress responses
during potentiostatic lithium insertion and extraction,
respectively, with the thermodynamic factor and exchange
current density calculated from the OCP given in Eq. (120).
For insertion, the potential was set to 0.1 V, with the initial
SOC, x1;50=0, and for extraction it was set to 0.25 V, with
xLiso=0.6. Not all of the lithium would be extracted at this
potential, but it yields a comparable average overpotential
for the two simulations. The simulations are ended once the
average SOC has been changed by 0.5.

The dimensionless current is also plotted in Figs. 15 and
16, while the surface overpotential and dimensionless
exchange current density are plotted in the lower portion of
the figures. As the dimensionless current decreases in mag-
nitude, the stress in the particle generally decreases, as
expected, with peaks in the stress arising due to valleys in
the thermodynamic factor (see Fig. 19). Regions of low
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Fig. 17 a The maximum tangential stress (at £&=1), b minimum
radial stress (at £=0), ¢ dimensionless current density, d surface
overpotential, and e dimensionless exchange current density during
potentiostatic_lithium extraction. The potential is set to 0.65 V vs
lithium, 8ky/*k; '/*f1/2 ¢/’2 = 0.01, the initial SOC is 0.6, and
Eq. (120) is used for the OCP. All other parameters are given in
Table 1. Nonidealities are included in the exchange current density
and the thermodynamic factor.

thermodynamic factor derive from plateaus in the material’s
OCP as a function of SOC (dU/dx; ;5s=0), according to
Eq. (133). A point at which the slope in the OCP is exactly
equal to zero (i.e., the thermodynamic factor is equal to
zero) is known as a consolute point, or critical mixing point,
and has been examined theoretically [25-29] and experi-
mentally [30, 31] for binary liquid systems. The plateaus in
the OCP in turn correspond closely to plateaus in the
dimensionless current, which is why the stress components
peak at the current density plateaus. These features are
clearly visible in the case of both insertion and extraction,
which occur over a moderate time scale (5 h), correspond-
ing to the moderate dimensionless current shown in the
figures.

The time required for insertion of 0.5 unit of lithium per
Cg unit at 0.1 V is slightly greater than that for extraction of
the same amount at 0.25 V, even though the average
absolute value of overpotential is higher in the former case
(71 mV vs 51 mV).> Moreover, the peak stresses are higher
for extraction, and the dimensionless current decays more
rapidly. Because the driving force for insertion/extraction,

2 Although it is not shown on the potential scale of Fig. 15, which
has been expanded to compare it with the overpotential for
extraction (Fig. 16), the overpotential for insertion (Fig. 15) starts
at less than —1.65 V.
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Fig. 18 Profiles of a SOC, b dimensionless flux, and ¢ stress during
potentiostatic extraction, at #=0.9 s. Nonidealities are included in the
exchange current density and thermodynamic factor. The potential
was set to 0.65 V, and the initial SOC is 0.6. Other parameters are
given in Table 1.

and therefore the current, increases with the exponential of
the absolute value of the dimensionless overpotential, one
might assume that the stress peaks would be higher and that
the current would decay faster for the simulation with the
higher overpotential, i.e., insertion. This discrepancy is
resolved by including the effect of the exchange current
density, which, for extraction, happens to be large at SOCs,
for which the overpotential is high in magnitude. For
insertion, on the other hand, the exchange current density is
close to zero when the overpotential is at its highest mag-
nitude, and the overpotential is small when the exchange
current density is high. Hence, the average product of the
exchange current density and the exponential term contain-
ing the overpotential is much greater for extraction. This
demonstrates the importance of including nonidealities in
the calculation of the exchange current density.

The choice of potential for potentiostatic extraction of
lithium deserves some special consideration. One might
choose a higher potential to remove more lithium. Figure 17
shows the stress evolution, dimensionless current, OCP,



and dimensionless exchange current density for a simula-
tion of extraction with an applied voltage of 0.65 V. At this
potential, extraction occurs much more rapidly, and the
timescale for the current density decay shown in Fig. 17 is
only 6 s. The dimensionless current over this period is on
the order of 1 to 10, indicating that the diffusion timescale
(90 s) is much greater than the extraction timescale. Thus,
the features of the stress response are dominated by the
diffusion process. At such high dimensionless currents, the
concentration profile is not fully developed by the time a
considerable fraction of lithium has been extracted, as
evidenced by the lack of symmetry between the radial and
tangential stresses. The first peak in radial stress at the
center of the sphere lags the peak in tangential stress at the
surface due to the finite time required for diffusion.

Figure 18 shows the mole-fraction, dimensionless flux,
and stress profiles in the particle at 1=0.9 s. Here, we see
that much of the lithium has been extracted in the region
£>0.6, whereas the SOC in the region £< 0.6 is near its
initial value of 0.6. Moreover, the shape of the profile is
dictated by the variation in the thermodynamic factor with
X1;5, Which is shown to the right of the mole-fraction
profile. Because the diffusivity is low where the thermo-
dynamic factor is low, the corresponding concentration
gradient is high. These low-diffusivity regions correspond
to plateaus in the OCP (see Fig. 12), which are attributed to
staging in the graphite. Hence, we might conclude that steep
segments of the mole-fraction profile mark regions in which
the graphite transforms from one stage to another. These
boundaries are marked by dashed vertical lines, although
the transition regions are less distinct than the lines suggest.

Fuller and Newman have calculated concentration pro-
files near a rotating disk at and around the consolute point
of a binary fluid [25, 26]. They show that, at the consolute
point, the concentration gradient becomes infinite to yield a
finite flux despite the existence of an effective diffusivity of
zero. In the solid solution considered here, an OCP fit is
used in which consolute points are narrowly avoided (i.e.,
the slope of the OCP approaches but never equals zero).
However, even at a consolute point, the finite pressure-
diffusion term, which is independent of the thermodynamic
factor, would yield a finite flux without the concentration
gradient going to infinity. For both of these reasons, the
concentration gradient in Fig. 18a remains finite.

The variation in diffusivity can also be ascertained from
the dimensionless flux profiles, with steps corresponding to
rapid increases in the thermodynamic factor. The fluxes are
both slightly negative in the unreacted region, £<0.6, be-
cause the material is being compressed there, although there
is no significant diffusion occurring in the region. The stress
profiles show corresponding behavior, with constant neg-
ative stress for £<0.6. Physically, one can view this as a
compression of the particle core due to the shell shrinking
around it.

The negative electrode or the entire cell would not be
discharged potentiostatically during practical battery oper-
ation; however, positive electrode materials such as lithium
manganese oxide undergo volume reduction (lithium ex-
traction) during cell charging. In this case the sort of be-
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Fig. 19 The a maximum radial stress (at £&=0), b minimum
tangential stress (at &=1), and ¢ thermodynamic factor during lithium
insertion. Eq. (120) is used for the OCP, and the assumption that
apis=1 is relaxed. All other parameters are given in Table 1.

havior exhibited in Figs. 16, 17, 18 is relevant, although
different thermodynamic properties should be used.
Figure 19 highlights the effect that the thermodymanic
factor has on the stress evolution for galvanostatic insertion.
It is clear that peaks in the stress correspond to low ther-
modynamic factors, whereas a high thermodynamic factor,
which corresponds to a high rate of diffusion and low
dimensionless current, results in minimal stress. Because
the thermodynamic factor is less than one for some states of
charge, the stress peaks are higher than the maximum stress
achieved when nonidealities are not taken into account
(compare with Fig. 5). Of equal importance is the fact that
the variation in thermodynamic factor leads to cycling of
the strain and stress over the course of insertion. Such cyclic
strains may reduce the tensile and compressive strengths of
the material over time. Thus, because the stress oscillates
more when nonidealities are included than when they are
neglected, it is expected that the inclusion of nonidealities

Stress (MPa) Stress (MPa)

0O 2 4 6 § 10 12 14
Time (h)

Fig. 20 Maximum stresses generated during two galvanostatic
insertion/extraction cycles. The upper plot shows the radial stress at
&=0 (solid curve) and tangential stress at =1 (dashed curve) for an
ideal solution (aq js=1). The lower plot shows the radial stress at £&=0
(solid curve) and tangential stress at £=1 (dashed curve) for a
particle with nonidealities (o ;s#1). The cycle profile used for the
simulation was: 3-h charge, 1-h rest, 3-h discharge, 1-h rest, 3-h
charge, 1-h rest, and 3-h discharge. Eq. (120) was used for the OCP,
and other parameters are given in Table 1.
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will predict the onset of fracture sooner than if nonidealities
were neglected.

Figure 20 elucidates this issue by showing two sequential
galvanostatic insertion/extraction cycles for an ideal solu-
tion (upper plot), in which the thermodynamic factor is a
constant, equal to 1, and for a nonideal solution (lower
plot), in which the thermodynamic factor is calculated from
the OCP. The cycle profile consists of 3-h charge and
discharge segments, separated by 1-h open-circuit relax-
ation periods. Because the dimensionless current is low, and
diffusion effects vanish on a short timescale compared to
insertion and extraction, the second cycle is identical to the
first. Over the two cycles, each component of stress has
only four extrema in the ideal case, while there are 10 local
maxima and 10 local minima in the nonideal case. In this
tally, we neglect the small spikes at the beginning of charge
and end of discharge, which are artifacts resulting from the
constant value of the thermodynamic factor at SOCs less
than 1.16x10°*. The higher frequency of cycling in the
latter scenario should decrease the life of the particle, or at
least hasten the occurrence of morphological changes.

The figure also illustrates the importance of carefully
selecting the SOC range over which a high-power ap-
plication is operated. HEV batteries are typically operated
over a narrow SOC range close to a depth of discharge of
50%. For a material with variable diffusivity, it is desirable
to operate over an SOC range where the diffusivity is
highest, not only because this results in fewer transport
limitations, but also because it minimizes the stress gen-
erated in the material.

Figure 21 shows the maxima in the two stress com-
ponents, as functions of dimensionless current, from sim-
ulations in which a varying thermodynamic factor was
included. The maxima for the ideal-solution simulations
(see Fig. 7) are included for comparison. The arrow in-
dicates the HEV example (arrow b from Fig. 7), corre-
sponding to a charge rate of 5C and particle radius of 5 um.
By considering nonidealities, one can conclude that fracture
is likely under these conditions. Another way of stating this
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Fig. 21 The maximum a tensile and b compressive stresses
calculated using a thermodynamic factor based upon Eq. (120)
and the maximum ¢ tensile and d compressive stresses calculated
using a thermodynamic factor of unity, as a function of dimension-
less current. The arrow marks the dimensionless current correspond-
ing to a 5-pum particle radius and 5C charge rate.
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Fig. 22 The plot on the left shows the dimensionless time at which
the i minimum tangential and 77 maximum radial stress components
are reached during lithium insertion, as a function of dimensionless
current. The plot on the right shows the tangential stress as a
function of dimensionless insertion time at two distinct dimension-
less currents corresponding to the open boxes in the left plot. The
dimensionless currents considered were a 0.08 and b 0.09. The
vertical line in the right plot serves as a guide to show which peak is
the absolute minimum for each of the dimensionless currents.

is that including nonidealities reduces by 78% the maxi-
mum allowable dimensionless current. This underscores
the importance of considering nonideal behavior of the
solid solution.

A subtle but interesting feature of the maximum tan-
gential stresses shown in Fig. 21 is that the curve bows at
1=0.089, then straightens out. By comparison, the curves
for the ideal case vary smoothly. The shape of the nonideal
curves is explored in more detail in Fig. 22. The left side of
the figure shows the normalized time (#*=t/t,), as a
fraction of the total insertion time (f), at which the
maxima are obtained for each dimensionless current that
was simulated. The time varies smoothly at low dimen-
sionless currents, but there is a discontinuity in the time at

104 = T T T T T LIS
= E High strength High modulus|
E E carbon fibers carbon fibers |
=S L GP-grade -
E E 1 03 | carbon fibers, |
5, F , 1
= & [ Pyrolytic b - -]
= 9 L _= i
%D f [ carbons < 4o

— 2
ZEZ10°E
25
72}
IS
) ST _C
= | — —graphites T ©__-- —I ____________
10 ==---7 1 11111 I 1 1 11 111
10 100 1000

Elastic modulus (GPa)

Fig. 23 Typical tensile strengths and elastic moduli of carbonaceous
materials, along with simulated tensile-stress maxima. The curves
show maximum stresses achieved in the simulations for dimension-
less currents (5-pum particle radius char%e rates) of a 0.222 (16C), b
0.167 (12C), ¢ 0.111 (8C), d 5.56x10 2 (4C), e 2.78x10* (2C), f
2.22x1072 (1.6C), g 1.67x1072 (1.2C), h 1.11x1072 (C/1.25), and i
5.56x10 > (C/2.5). Simulations were performed with various elastic
moduli. The material properties represented by the boxes are taken
from Inagaki [17]. Disordered MCMB is included in the isotropic
graphite category.



which the maximum tangential stress is obtained. This
discontinuity occurs because, as the shape of the stress
response varies with dimensionless current, the stress
maxima hop from one peak to the next, as shown on the
right side of Fig. 22. This plot shows the tangential stress
minima on an expanded scale for two dimensionless
currents, 0.08 and 0.09. These currents correspond to the
two open boxes in Fig. 22, each of which is in a separate
region on the curve for the minimum tangential stress. Here
we see that at /=0.08, the minimum stress is at the bottom
(earliest) peak, while at /=0.09, the minimum is at the end
of charge.

Figure 23, adapted from Inagaki [17], gives the elastic
modulus and tensile strength of a broad range of carbo-
naceous materials. Disordered MCMB falls in the isotropic
graphite category. The curves represent simulated maxi-
mum tensile stresses that arise during lithium insertion at
various dimensionless currents. The curves are slightly
crooked due to the peak-hopping phenomenon illustrated in
Fig. 22. As the dimensionless current is increased from
5.56x107° (curve i) to 0.222 (curve a), the maximum stress
for a given elastic modulus increases. For a particle with
Ry=5 um, these dimensionless currents correspond to
charge rates ranging from C/2.5 to 16C. At charge rates
above 4C (curve e), the tensile strength for some types of
carbon is surpassed, meaning fracture is likely for these
materials at higher currents. A charge rate of 16C is some-
what greater than the requirements for an HEV application,
although such rates may be desirable for future applica-
tions. For such high-rate applications, carbon-based nega-
tive electrodes can be used only if a smaller particle size is
used, or if the material properties could be altered to
increase the tensile strength.

Conclusion

A mathematical model for volume expansion and contrac-
tion of lithium insertion compounds has been developed,
which calculates the stresses that arise during lithium
insertion and extraction in lithium-ion-battery operation.
High-power applications, such as HEVs, have an increased
likelihood of particle fracture compared to low-power ap-
plications. Particle fracture can be prevented by reducing
the size of the particles, although this tends to accelerate
failure in systems that are susceptible to side reactions, such
as solvent decomposition.

For materials that expand during lithium insertion, such
as carbon and manganese oxide, the particle surface is most
likely to fracture at the end of extraction, while the center is
most likely to fracture near the beginning of lithium in-
sertion, once the concentration profile is fully developed.
Although this is true for ideal solutions, nonideal solutions
do not follow this trend exactly, and the time at which the
peak stress is obtained depends upon the lithium—host in-
teractions, as well as the applied potential in the case of
potentiostatic charging.

Our simulations demonstrate that pressure-diffusion is
significant and must be accounted for when calculating the
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rate of lithium diffusion and magnitude of stress generation.
Although it only weakly affects the stress maxima obtained
during full insertion and extraction, the role of pressure
diffusion becomes relevant for cells that are cycled between
intermediate SOC limits. The actual contribution of pres-
sure diffusion depends upon how the partial molar volumes
vary with composition.

Furthermore, nonidealities embodied in the thermody-
namic factor and, under potentiostatic conditions, the ex-
change current density have a significant impact on the
charge and discharge behavior, including the stress re-
sponse. The variation of stress due to the variation in the
thermodynamic factor is particularly important when con-
sidering material fatigue due to strain cycling.

List of symbols

a; Activity of species i

a’ Activity of species i at a secondary reference state

C C rate, h™"

c Total concentration, mol/m>

Co Composition-dependent component of
concentration, mol/m>

C Concentration of species i, mol/m?

D Dimensionless ratio of diffusive to elastic energy

Diiss Binary diffusion coefficient, m?/s

diis Thermodynamic driving force, N/m*

E Elastic modulus, N/m?

E* Eulerian strain

e Dilatational strain; dimensionless elastic modulus
F Faraday’s constant, 96,487 C/mol

G Total Gibbs function, J

g Nonideal correction to Nernstian OCP, V'
g Dimensionless correction to Nernstian OCP
1 Dimensionless current

Iy Dimensionless exchange current density
1, Current per particle, A

i Current density, A/m?

io Exchange current density, A/m?

Forward rate constant, mol/m?-s
Backward rate constant, m/s

Molar mass of species i, g/mol
Molar-mass ratio

Molar flux of species i, mol/m?-s
Dimensionless molar flux of species i
Number of moles of species i, mol
Pressure, N/m>

External hydrostatic pressure, N/m?

Gas constant, 8.314 J/mol-K

Particle radius, m

Initial particle radius, m

Radial coordinate, m

Radial position, m

Initial radial position, m

Partial molar entropy of species i, J/mol-K
Temperature, K

Total stress, N/m?

Time, s

OCP, V
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Standard cell potential, V
Dimensionless OCP

Displacement, m

Dimensionless displacement

Cell potential, V

Partial molar volume of species i, m*/mol
Partial molar volume ratio

Velocity of species i, m/s

Radial gradient of u

Mole fraction of species i

Maximum SOC

Stretched coordinate

Time derivative of u, m/s
Thermodynamic factor

Symmetry factor

Mole-fraction activity coefficient
Dimensionless reference exchange current density
Kronecker delta

Strain

Dimensionless time derivative of u
Dimensionless surface overpotential
Surface overpotential, V
Dimensionless total concentration
Compressibility, m?/N

Lamé constant, N/m?

Lamé constant, N/m?>

Chemical potential of species 7, J/mol
Secondary reference chemical potential of species
i, J/mol

Poisson’s ratio

Dimensionless radial position
Dimensionless pressure

Density, g/m’

Density of pure B, g/m’

Normal elastic stress, N/m?
Dimensionless stress

Dimensionless time

Dimensionless particle radius
Fractional expansivity
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Subscripts
LiS Lithium intercalated host material
r Radial

S Unoccupied host material

t Tangential
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Appendix
Thermodynamics and kinetics

For lithium insertion into a generic host material, we
consider the following reversible electrochemical reaction:

LiS — Li" +e +8, (125)

where S represents the host material. The OCP, U, of the
intercalation material relative to a lithium reference is given
by the equation

FU = i, + pis — figs, (126)

where F is Faraday’s constant and p?. is the chemical
potential of pure lithium metal, which does not depend
upon the composition of the host material. As in Eq. (6), the
chemical potential of a species can be expressed in terms of
its mole fraction, activity coefficient, and secondary
reference chemical potential:

p; = 1l + RT In (y,x,). (127)

Expanding the chemical potentials in Eq. (126), we have

FU = FU’ + RTIn <xs> +RTIn (i) (128)
XLis Viis
where
FU” = i+ 1 — il (129)
Differentiating Eq. (126) with respect to xp ;5 yields
U g _ b (130)

OXpis Oxps  OXpis

The species S and LiS are not independent of each other; the
amounts of the two species sum to a constant, and their
chemical potentials are related by the Gibbs—Duhem
equation:

Xuisd s + Xsdpig = 0. (131)
Thus, Eq. (130) becomes
o, oUu
s — _F(1 = x) (132)
0xyis Oxyis



Applying Eq. (7), the thermodynamic factor is therefore

Ay Xiis Ofhis

1+ =
dlnx,s RT ox; (133)
F (1 ) oUu
= ——xus(l —xps) ——.
RT LiS LiS axLis
For an ideal solution,
RT I —xy,
L/::l]aﬁ————ln,( X“S), (134)
F Xiis

and the thermodynamic factor is unity. The derivation shown
here follows the development of Darling [32], and avoids
invoking the excess free energy, which is used by Verbrugge
and Koch to derive a similar relationship between the ther-
modynamic factor and OCP via interaction parameters [33].
Our approach is more general than that of Verbrugge and
Koch, in that it accommodates the wide variety of empirical
OCP fits available in the literature. However, care must be
taken when the empirical fits do not correctly approach the
dilute limits or when they result in negative values for the
thermodynamic factor.

A kinetic model is required to determine the effect of
nonidealities in the electrode and electrolyte upon the ex-
change current density. Typically, the concentrations of
reactants and products are used, but here, we use their
activities for the sake of generality. The current associated
with reaction Eq. (125) (i.e., lithium insertion into a generic
host material) can be expressed as

| s ~BFV
i :F[ tays exp <T — ki asa,+ exp RT ,

(135)

where a; ;5 and ag are activities of lithium-filled and lithium-
void sites in the host material, respectively; ay ;+ is the activity
of lithium ions in solution; k{ and & are the forward and
backward rate constants, respectively; and Vis the difference
between the electrode potential and the potential in the
solution near the electrode, relative to a lithium reference
electrode in contact with electrolyte of a particular lithium ion
concentration (e.g., | M).

The thermodynamic OCP is obtained by setting the
current to zero:

1-pB)FU —BFU’
kf/‘aLiS exp (ﬂ) = kéasaLﬁ eXp ( ﬁ u ) .

RT RT
(136)

We emphasize that U’ is different from the measured OCP
given in Eq. (128), which is independent of the activity of
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lithium ions. In describing solid diffusion phenomena in the
electrode, the activity of lithium ions is irrelevant and can
be set arbitrarily to the reference activity.

We can rearrange Eq. (136) to solve for the forward rate
preexponential factor:

—FU'
kiays = kiasa, i+ exp < ) .

<7 (137)

Substituting this expression into Eq. (135), we have

—BFU’
RT >

i = Fk{asa,;+ exp <

(138)
1 - B)F —BF
o (™) e ()]
where
n=V-U (139)

is the surface overpotential of the reaction. Equations (137)
and (138) can subsequently be combined to yield

i=F (kgaus)‘g (k{)asam)

() ()
The activities of the solid species are given by
a; = a?vixi, (141)
where a/ is the activity at a particular secondary reference

state (i.e., it is a function of temperature and pressure, but
not of composition), and +; is the mole fraction activity
coefficient. For lithium ions, we use an activity that is
independent of electrical state. That is,

(142)

_ 0
ayi+ = am,nfu*,ncl_ﬁ,

where afi+ , and fi;+ , are, respectively, the reference ac-

tivity and activity coefficient of lithium ions with respect to
a reference species, #, in solution (see Eq. 3.19 of reference
[34]). The reference species must be ionic, and, in our bi-
nary electrolyte, is limited to lithium ions and the corre-
sponding anion. Because the reference electrode used here
is lithium metal, lithium ions are the natural choice for the
reference ion. Accordingly,

_ fLi+

~ gref?
Lit

Jiiem (143)
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where fLriif is the ionic activity coefficient at the reference
concentration of lithium ions (i.e., the concentration ad-
jacent to the reference electrode). The ratio does not depend
upon an ill-defined electrical state, and therefore, neither
does the activity of lithium ions used in the kinetic model.
Note that with this choice of reference ion, afiw =1.

From the above definitions of activity, Egs. (138) and
(140) can be expressed as

. —BFU’
i = FkyygXs f 1+ nCri+ €XP ( iT >

o) ()]

and

(144)

i = Fitky " lon Ol (fi e ) 7
1 - B)F —BF 145
<Joo () e ()

RT
where k¢ = kfa®; and k, = kj,a. Equation (145) is the
familiar Butler—Volmer equatlon w1th the preexponential
group constituting the exchange current density.
Solving for U’ in Eq. (137), using the Egs. (141) and
(142) for the activities, we have

RT X RT .
v —uve 4 B, <_) R <_>
F XLis F Yiis

RT
—|— — In (le ,,CL1+)

(146)

where

RT ky
U/G — l
<kf>

In contrast to the reference potential given in Eq. (128), this
term is complicated by the fact that the ratio &y/k¢ has units
of inverse molarity. Essentially, it is the reference potential
from Eq. (128), with the dependence upon lithium ion
concentration removed. This is why we distinguish be-
tween the thermodynamic U’ and the measured U; the latter
has no ionic composition dependence. Section 5.7 of ref-
erence [34] elaborates further upon this subject.

Presumably, the OCP is Nernstian in the limit of small
LiCg concentration. That is,

RT X,
lim U'=U°+—1n (= —1
xLilerOU U” + F n (xus + n (le+ nCLit )

(147)

(148)

Let g(x ;) represent the deviation from Nernstian behavior
over the entire stoichiometric range of the material. In other
words, let

RT X
U=U%+—1In < S) —|—— In (fii+ peni) + g(xus)-
F XLis
(149)
Comparing Eq. (149) with Eq. (146), we see that
RT .~
s) =— In—= 150
g<x1.ls) I n,}/us (150)

From the Gibbs—Duhem equation [Eq. (131)] and the
relationship between the chemical potential of a species and
its thermodynamic factor [Eq. (7)], we can show that the
thermodynamic factor for species S is identical to the
thermodynamic factor for species LiS. Hence, by Eq. (133),
we have

!

3U
8 XLis

dlnyg  F

1 N
+ 31nx5 RT

xLiS(l xus) (151)

Here, we have made use of the fact that the dependence of
U’ upon xp ;g is identical to that of U.

In defining our reference state, we specify that the
activity coefficient of a species approaches unity in the limit
of dilute lithium (i.e., vacant host material):

v — lasxys — 0. (152)

Thus, rearranging and integrating (151) yields:

FU(;CL‘S U'(x)dx — xLiSU,(xLiS)}>
RT '

1
s =7 s exp <—

(153)
Insertion of this result into Eq. (144) yields

i = Fhb fii+ nCLit
<o (- FLJg™ U+ (5 - xusw'(xm)])

RT
_ﬁFns>:|
RT ’

on(155) o

The resulting exchange current density is a function of
electrode composition via the OCP:
U/(xus)]>

(155)

(154)

iO = F'klf)f‘LiJr,ncLiJr

« exp (_F[fgr.-s U (x)dx ;;ﬁ—xus)




Substituting Eq. (149) into (155), we can write the
exchange current density in terms of the nonideal portion
of the OCP:

io = Fhy "k el P10 = xs) ' xl
y exp _F[ (;les g(x)dx + (/B — xl_is)g<x]_is)] )
RT
(156)
In dimensionless form,
To = (1 —xps) 7% D oxs). (157)
where
Iy = fo (158)
0= " 1-8,8,1- B 15
Fk k f it,n L1
XLiS
F<xLiS) = eXp {_/ g(x)dx - (ﬁ - xLiS)g(xLiS) ,
0
(159)
and
Fg
5 — 160
E=rr" (160)

For potentiostatic lithium extraction and insertion, the
galvanostatic boundary condition Eq. (105) is replaced with

d »
Nus exus TX = 8(1 - xLiS)l ﬂxf;sr(xus)
x {exp[(1 — B)H] —exp (—SH)}
até =1,
(161)
where
F
H="1k (162)
RT
and
klfﬂf e o ‘jkﬂRM
§— > L i (163)

Dus,sps
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